Correction: COUP-TFII Mediates Progesterone Regulation of Uterine Implantation by Controlling ER Activity
نویسندگان
چکیده
Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone-Indian hedgehog-Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer.
منابع مشابه
FGF2 Stimulates COUP-TFII Expression via the MEK1/2 Pathway to Inhibit Osteoblast Differentiation in C3H10T1/2 Cells
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor that regulates many key biological processes, including organ development and cell fate determination. Although the biological functions of COUP-TFII have been studied extensively, little is known about what regulates its gene expression, especially the role of inducible extracellular factors i...
متن کاملDirect transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development.
The lymphatic system plays a key role in tissue fluid homeostasis. Lymphatic dysfunction contributes to the pathogenesis of many human diseases, including lymphedema and tumor metastasis. However, the mechanisms regulating lymphangiogenesis remain largely unknown. Here, we show that COUP-TFII (also known as Nr2f2), an orphan member of the nuclear receptor superfamily, mediates both developmenta...
متن کاملDecreased chicken ovalbumin upstream promoter transcription factor II expression in tamoxifen-resistant breast cancer cells.
Tamoxifen (TAM) is successfully used for the treatment and prevention of breast cancer. However, many patients that are initially TAM responsive develop tumors that are antiestrogen/TAM resistant (TAM-R). The mechanism behind TAM resistance in estrogen receptor alpha (ERalpha)-positive tumors is not understood. The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor...
متن کاملEffect of soy isoflavones on implantation losses in Wistar rat: implication of progesterone receptors, vascular endothelial growth factor and estradiol receptors alpha
Background: Implantation is a crucial period determining the success of a full pregnancy. Endocrine disruptors such as phytoestrogens (PEs) were thought to adversely influence embryonic implantations. However, the mechanism by which they upset implantation was not fully elucidated. Aims: The effect of administering soy isoflavones on the implantation of Wistar ...
متن کاملDysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer
Although early detection and treatment of prostate cancer (PCa) improves outcomes, many patients still die of metastatic PCa. Here, we report that metastatic PCa exhibits reduced levels of the microRNAsmiR-101 and miR-27a. These micro-RNAs (miRNAs) negatively regulate cell invasion and inhibit the expression of FOXM1 and CENPF, two master regulators of metastasis in PCa. Interestingly, the repr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 3 شماره
صفحات -
تاریخ انتشار 2007